

 Navigation

 	
 index

 	PoC-Examples latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/poc-examples/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/poc-examples/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	PoC-Examples latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _static/minus.png

search.html

 Navigation

 		
 index

 		PoC-Examples latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

README.html

 Navigation

 		
 index

 		PoC-Examples latest documentation »

The PoC-Examples Collection

PoC - “Pile of Cores” provides implementations for often required hardware
functions such as FIFOs, RAM wrapper, and ALUs. The hardware modules are
typically provided as VHDL or Verilog source code, so it can be easily re-used
in a variety of hardware designs.

This repository provides common examples and synthesis tests to show how the
PoC-Library can be used. The PoC-Library is referenced as a git submodule.

Table of Content:

		Overview

		Download

		Requirements

		Configure PoC-Examples on a Local System

		Synthesizing Examples

		Updating PoC

1 Overview

TODO TODO TODO

2 Download

The PoC-Examples Collection can be downloaded as a zip-file [https://github.com/VLSI-EDA/PoC-Examples/archive/master.zip] (latest
‘master’ branch) or cloned with git clone from GitHub. GitHub offers HTTPS and SSH
as transfer protocols. See the Download [https://github.com/VLSI-EDA/PoC/wiki/Download] wiki page for more details.

For SSH protocol use the URL ssh://git@github.com:VLSI-EDA/PoC-Examples.git or command
line instruction:

cd <GitRoot>
git clone --recursive ssh://git@github.com:VLSI-EDA/PoC-Examples.git PoC-Examples

For HTTPS protocol use the URL https://github.com/VLSI-EDA/PoC-Examples.git or command
line instruction:

cd <GitRoot>
git clone --recursive https://github.com/VLSI-EDA/PoC-Examples.git PoC-Examples

Note: The option --recursive performs a recursive clone operation for all
linked git submodules [http://git-scm.com/book/en/v2/Git-Tools-Submodules]. An additional git submodule init and
git submodule update call is not needed anymore.

3 Requirements

The PoC-Examples Collection and the PoC-Library come with some scripts to ease most
of the common tasks, like running testbenches, generating IP cores or synthesizing
examples. We choose to use Python as a platform independent scripting environment.
All Python scripts are wrapped in PowerShell or Bash scripts, to hide some platform
specifics of Windows or Linux. See the Requirements [https://github.com/VLSI-EDA/PoC/wiki/Requirements] wiki page
for more details and download sources.

Common requirements:

		Programming languages and runtimes:
		Python 3 [https://www.python.org/downloads/] (≥

 3.4):
		colorama [https://pypi.python.org/pypi/colorama]

		Synthesis tool chains:
		Xilinx ISE 14.7 or

		Xilinx Vivado ≥

 2014.1 or

		Altera Quartus-II ≥

 13.x

		Simulation tool chains:
		Xilinx ISE Simulator 14.7 or

		Xilinx Vivado Simulator ≥

 2014.1 or

		Mentor Graphics ModelSim Altera Edition or

		Mentor Graphics QuestaSim or

		GHDL [https://sourceforge.net/projects/ghdl-updates/] and GTKWave [http://gtkwave.sourceforge.net/]

Linux specific requirements:

		Debian specific:
		bash is configured as /bin/sh (read more [https://wiki.debian.org/DashAsBinSh])dpkg-reconfigure dash

Windows specific requirements:

		PowerShell 4.0 (Windows Management Framework 4.0 [http://www.microsoft.com/en-US/download/details.aspx?id=40855])
		Allow local script execution (read more [https://technet.microsoft.com/en-us/library/hh849812.aspx])Set-ExecutionPolicy RemoteSigned

		PowerShell Community Extensions 3.2 (pscx.codeplex.com [http://pscx.codeplex.com/])

4 Configure PoC-Examples on a Local System

To explore PoC-Examples’ and PoC’s full potential, it’s required to configure
some paths and synthesis or simulation tool chains. The following commands
start a guided configuration process. Please follow the instructions. It’s
possible to relaunch the process at every time, for example to register new
tools or to update tool versions. See the Configuration [https://github.com/VLSI-EDA/PoC/wiki/Configuration]
wiki page for more details.

4.1 Configuring the Embedded PoC-Library

All Windows command line instructions are intended for Windows PowerShell,
if not marked otherwise. So executing the following instructions in Windows
Command Prompt (cmd.exe) won’t function or result in errors! See the
Requirements [https://github.com/VLSI-EDA/PoC/wiki/Requirements] wiki page on where to download or update
PowerShell.

Run the following command line instructions to configure the embedded PoC-Library
on your local system.

cd <ExamplesRoot>
cd lib\PoC\
.\poc.ps1 configure

4.2 Creating PoC’s my_project File

The PoC-Library needs two VHDL files for it’s configuration. These files are used
to determine the most suitable implementation depending on the provided platform
information. A set of my_config files is provided within the collection, but a per
host my_project.vhdl needs to be created.

The my_project file can be created from a template provided by PoC in
<ExamplesRoot>\lib\PoC\src\common\my_project.vhdl.template.

The file must to be copyed into the collection’s source directory <ExamplesRoot>\src\common
and rename into my_project.vhdl. This file must not be included into version control
systems - it’s private to a host computer.

cd <ExamplesRoot>
cp lib\PoC\src\common\my_project.vhdl.template src\common\my_project.vhdl

my_project.vhdl defines two global constants, which need to be adjusted:

constant MY_PROJECT_DIR : string := "CHANGE THIS"; -- e.g. d:/vhdl/myproject/, /home/me/projects/myproject/"
constant MY_OPERATING_SYSTEM : string := "CHANGE THIS"; -- e.g. WINDOWS, LINUX

5 Synthesizing Examples

The PoC-Examples Collection is shipped with project files for various tool chains and IDEs.

5.1 Using Xilinx ISE

5.2 Using Xilinx Vivado

5.3 Using Altera Quartus-II

6 Updating PoC-Examples

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

src/mem/sdram/README.html

 Navigation

 		
 index

 		PoC-Examples latest documentation »

Content

This directory demonstrates the usage of the SDRAM controller
provided in the namespace PoC.mem.sdram [https://github.com/VLSI-EDA/PoC/tree/master/src/mem/sdram] of the
PoC-Library [https://github.com/VLSI-EDA/PoC].

Examples

SDRAM Controller Usage Example for Altera DE0 Board

The module memtest_de0 is the top-level module of the
memory tester. It uses the sub-module memtest_de0_pll
for clock generation.

More project specific files are located here.

SDRAM Controller Usage Example for Xilinx Spartan-3E Starter Kit

The module memtest_s3esk is the top-level module of the
memory tester. It uses the sub-module
memtest_s3esk_clockgen for clock generation.

More project specific files are located here.

Preferred ISE Setup

For testing the design, the following ISE configuration parameters have
been changed. They are also suitable for other FPGA projects.
(If necessary, change property display level to “Advanced”.)

Synthesize:

		Optimization Goal: Area

		Optimization Effort: High

		Use Synthesis Constraints File: Yes

		Synthesis Constraints File: s3esk.xcf

		FSM Encoding Algorithm: One-Hot

		Resource Sharing: No

		Equivalent Register Removal: No

		Pack I/O Registers into IOBs: Yes

Implement:

		Perform Timing-Driven Packing and Placement: Yes

		Place & Route Effort Level: High

Generate Programming Files: (These are required for clockgen_s3esk)

		Done: 6

		Enable Ouputs: 3

		Release Write Enable: 5

		Wait for DLL Lock: 4

Do not forget adding s3esk.ucf to the project! Or import the timing
constraints to your ucf-file.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

